<u>1 - 1</u>

Variables and Expressions

Converting expressions

Given the following verbal expressions, convert them into algebraic expressions

1) eight more than a number

2) seven less than the product of a number and four.

2)
$$c^2 + 21d$$

<u>1-2</u> Order of Operations


```
Use Order of Operations to simplify the following:

1) (15 - 9) + 3 \cdot 4

2) 3^2 - 4(6 - 3 \cdot 3)
```

EVALUATE (Find the value of the algebraic expression below)

* When replacing a variable with a number, ALWAYS use parenthesis around the number

$$a = 2, b = -3, c = -1$$

<u>1 - 3</u>

Open Sentences

TERMINOLOGY

Open Sentence - an equation with zero, one, or more possible solutions

Replacement Set - a set of numbers that could be possible solutions. You use these numbers to replace the variable in the equation to check to see if the number is a solution.

Solution Set - a set of numbers that contains all possible solutions

Example:

Use the replacement set and the open sentence to find the solution set.

1) Replacement: $\{3, 4, 5, 6, 7\}$ Open Sentence: 6m + 7 = 37

2) Replacement Set: $\{0, 1, 2, 3\}$ Open Sentence: -2x + 4 > 0

<u>1 - 4</u>

Identity and Equality Properties

IDENTITIES

Additive Identity	>	$\mathbf{a} + 0 = \mathbf{a}$
Multiplicative Identity	>	$\mathbf{a} \cdot 1 = \mathbf{a}$
Multiplicative Prop of Zero	>	$\mathbf{a}\cdot0=0$
Multiplicative Inverse (reciprocal)	>	$a \cdot \frac{1}{a} = 1$

PROPERTIES

Reflexive Property	>	a = a
--------------------	---	-------

- Transitive Property ---> If a = b and b = c, then a = c
- Substitution Property ---> If a = b then a maybe replaced by b

<u>1-5</u> **Distributive Property**

Distributive Property

$$\mathbf{a}(\mathbf{b} + \mathbf{c}) = \mathbf{a}(\mathbf{b}) + \mathbf{a}(\mathbf{c})$$

Examples:

3(x + 3) = 3x + 9x(y - 2) = xy - 2x4x(3y + 2) = 12xy + 8x

EXAMPLE

Using Distribution for Multiplication

1) 4(43)

2) 6(112)

3) 12(1234)

<u>1 - 6</u>

Commutative and Associative Properties

<u>**COMMUTATIVE</u>** - The order in which you add or multiply *two numbers* does not change the result</u>

$$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$$

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

<u>ASSOCIATIVE</u> - The order in which you add or multiply three or more numbers does not change the result.

$$(a+b) + c = a + (b+c)$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

<u>1 - 7</u>

Logical Reasoning and Counterexamples

|--|

A statement typically written in "If / Then" form.

<u>Hypothesis</u> - The "If" part of a Conditional Statement

<u>Conclusion</u> - The "Then" part of a Conditional Statement

Exam	p	le

`, th	ien
(Hypothesis)	(Conclusion)

Deductive Reasoning

A process that uses facts, rules, definitions or properties to reach a valid conclusion.

EXAMPLE

Determine if the conclusion in the statement below is valid, using Deductive Reasoning.

1) If one number is odd and another is even, then their sum is odd.

Counterexample

An example that proves a conclusion in a conditional statement is false.

EXAMPLE

Determine if the conclusion in the statement below is valid, using Deductive Reasoning. If the conclusion is not true, provide a **counterexample**.

1) If a number x is squared, then $x^2 > x$.

<u>1 - 8</u>

Number System

<u>3 Types of Rational Numbers</u>

<u>**Integer</u>** - Any positive or negative number whose denominator is zero.</u>

.....-3, -2, -1, 0, 1, 2, 3.....

<u>Whole</u> - Any positive integer. Includes zero.

0, 1, 2, 3.....

Natural - Any Whole number, NOT including zero.

1, 2, 3.....

EXAMPLES

Classify the following:

1) 4

2) 2/5

3) -6 4) √7

<u>1 - 9</u>

Functions and Graphs

TERMINOLOGY

Function - Exactly one output (y - value) for every input (x - value)

<u>**Coordinate Plane</u>** - Formed by the intersection of two number lines, the horizontal axis (x - axis) and vertical axis (y - axis)</u>

<u>**Ordered Pair</u>** - The location of a Point on the Coordinate plane. (x, y) represents its location</u>

<u>**Origin**</u> - point where x - axis and y-axis intersect. Written as an ordered pair as (0, 0)

TERMINOLOGY

Domain - refers to the input (x - values) of a function **Range** - refers to the output (y - values) of a function

Discrete Function - A graph that consists of points that are not connected. **Continuous Function** - A function represented by a straight line or smooth curve.

Independent Variables - Information that relates to the input (x - value) **Dependent Variables** - Information that relates to the output (y - value)

EXAMPLE

Using the provided ordered pairs, find the following:

(1, 2), (3, -4), (-1, 5), (-4, -5)

1) Domain

2) Range

3) State whether the function is Discrete or Continuous

